Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2.
نویسندگان
چکیده
* Flowering is a critical stage in plant life cycles, and changes might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global change drivers are needed for predictions of global change impacts on natural and managed ecosystems. * Here, the impact of elevated atmospheric CO2 concentration ([CO2]) (550 micromol mol(-1)) and warming (+2 masculineC) is reported on flowering times in a native, species-rich, temperate grassland in Tasmania, Australia in both 2004 and 2005. * Elevated [CO2] did not affect average time of first flowering in either year, only affecting three out of 23 species. Warming reduced time to first flowering by an average of 19.1 d in 2004, acting on most species, but did not significantly alter flowering time in 2005, which might be related to the timing of rainfall. Elevated [CO2] and warming treatments did not interact on flowering time. * These results show elevated [CO2] did not alter average flowering time or duration in this grassland; neither did it alter the response to warming. Therefore, flowering phenology appears insensitive to increasing [CO2] in this ecosystem, although the response to warming varies between years but can be strong.
منابع مشابه
Phenological responses of prairie plants vary among species and year in a three-year experimental warming study
As temperature is a common regulator of temperate plant phenology, future increases in global temperatures are likely to cause shifts in the timing of plant phenophases such as flowering and senescence, with potential feedbacks on species interactions and carbon cycling. We used a 3-year field warming study in a temperate grassland to investigate the effects of two levels of warming (þ;1.58C an...
متن کاملDiverse responses of phenology to global changes in a grassland ecosystem.
Shifting plant phenology (i.e., timing of flowering and other developmental events) in recent decades establishes that species and ecosystems are already responding to global environmental change. Earlier flowering and an extended period of active plant growth across much of the northern hemisphere have been interpreted as responses to warming. However, several kinds of environmental change hav...
متن کاملTemperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6-5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goa...
متن کاملThe Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland
BACKGROUND The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS A 4-year field experiment with day and night warming was conducted to examine ...
متن کاملTemperature-dependent shifts in phenology contribute to the success of exotic species with climate change.
PREMISE OF THE STUDY The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The New phytologist
دوره 178 4 شماره
صفحات -
تاریخ انتشار 2008